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EXPERIMENTAL AND THEORETICAL PHYSICS (4)

Candidates offering the whole of this paper should attempt a total of
six questions, three from Section A and three from Section B. The
questions to be attempted are A1, A2 and one other question from
Section A and B1, B2 and one other question from Section B.

Candidates offering half of this paper should attempt a total of three
questions, either three from Section A or three from Section B.
The questions to be attempted are A1, A2 and one other question
from Section A or B1, B2 and one other question from Section B.

Answers to each question should be tied up separately, with the number
of the question written clearly on the cover sheet.

The approximate number of marks allocated to each part of a question
is indicated in the right margin. This paper contains 7 sides, and is
accompanied by a book giving values of constants and containing
mathematical formulae which you may quote without proof.
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You may not start to read the questions
printed on the subsequent pages of this
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SECTION A

SOFT CONDENSED MATTER AND BIOPHYSICS

A1 Attempt this question.
Give concise answers to all three parts of the question. Relevant formulae

may be assumed without proof.

(a) Estimate the width of the distribution of the misorientation angle in a
nematic liquid crystal with an order parameter of 0.95. [4]

(b) The amphiphilic molecule sodium dodecyl sulphate (SDS) has the
following molecular characteristics: length of hydrophobic tail lc = 1.67 nm,
volume of hydrophobic tail v = 0.35 nm3, area per head group a0 = 0.57 nm2.
Assuming that SDS forms spherical micelles, calculate the micelle radius and
the mean aggregation number. [4]

(c) Consider a dilute polybutadiene chain with N = 104 Kuhn monomers of
length a = 6 Å in 1,4-dioxane at 26.5 ◦C (a θ-solvent). The chain carries a
positive charge +e on one end and a negative charge −e at the other end.
What will be the average end-to-end distance in the x-direction, Rx, in an
electric field E = 106 V m−1 acting along the x-axis, compared to the
root-mean-square end-to-end distance of the polymer chain in the absence of
the field?

[
Ignore the direct Coulomb interaction of the two charges. The

force-distance law for ideal polymers is fx = 3kTRx/(Na2).
]

[4]

A2 Attempt this question.
Write brief notes on two of the following: [13]

(a) the packing of liquid crystals and the role of the excluded volume;

(b) the fluid dynamics of a micrometre-sized robot (nanobot) designed to
navigate inside blood vessels;

(c) a qualitative description of membrane elasticity and its significance for
cell membranes;

(d) diffusion-controlled aggregation.
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A3 Attempt either this question or question A4.
Consider a polymer solution as a function of concentration and solvent quality.

(a) Sketch the phase diagram for the polymer solution and label the different
solubility regimes. [4]

(b) Describe the chain conformation in the dilute regime for good, θ, and
poor solvent conditions. Calculate the end-to-end distance R of dilute
polystyrene chains with a statistical segment length of a = 6.7 Å and a
degree of polymerisation of N = 1000 in (i) ethyl benzene (a good solvent),
(ii) cyclohexane at 34.5 ◦C (a θ-solvent), and (iii) water (a poor solvent). [7]

(c) Calculate the overlap volume fraction, φ∗, for polystyrene in cyclohexane
at 34.5 ◦C. [4]

(d) For the polystyrene solution in (c), calculate the correlation length, ξ, for
volume fraction of polystyrene of φ = 0.1. Describe the chain statistics on
length scales smaller and larger than ξ. [6]

(e) Describe the diffusive motion of chain segments in dilute (φ ¿ φ∗) and
highly concentrated (φ . 1) polymer solutions. How does the diffusion differ
for the two concentrations when averaged over long times? [4]
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A4 Attempt either this question or question A3.

(a) Give a qualitative description of the origin of surface tension. Derive the
surface tension for the case of a liquid in which the interaction between two
planar surfaces separated by a distance h is given by the van der Waals force
per unit area F (h) = A(6πh3)−1, where A is the Hamaker constant. Why is
it necessary to impose a cut-off for the Hamaker force for small h? Give a
common choice for this cut-off. Give one experimental fact which illustrates
why this general approach is only an approximation and explain the reason
for the approximate nature of the model. For what type of liquid does this
approach break down completely? [8]

(b) When a liquid is deposited onto a solid surface, the surface tension
manifests itself by the shape of the drop that forms. Write down and explain
Young’s equation and the spreading coefficient. [4]

(c) A drop of oil with a surface tension of 21.3 mNm−1 is put onto a
substrate, which has been modified so that its chemical nature is very similar
to that of the liquid (substrate-air surface energy = 23mNm−1). The initial
contact angle of the oil is 90◦. Use the spreading coefficient to describe
qualitatively the evolution of the drop with time. Calculate the equilibrium
contact angle. Qualitatively, what is the shape of a drop of water that is
placed onto this surface? [4]

(d) Mercury has the following properties: contact angle with glass θ = 140◦,
surface tension γ = 0.436 N m−1, density ρ = 1.35 · 104 kgm−3. Sketch what
happens when a glass capillary is vertically inserted into a pool of mercury.
Calculate the height of mercury in a capillary with an inner diameter of
1mm. Give a qualitative reason for the high value of the surface tension of
mercury. [4]

(e) Air at a pressure of 10Nm−2 above atmospheric pressure is used to
create a bubble from a soap solution which has a surface tension of
25mN m−1. Calculate the diameter of the soap bubble. Explain what
happens when two soap bubbles of different diameters attach to each other
in a way that allows diffusion of air across their separating soap film. [5]
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SECTION B

QUANTUM CONDENSED MATTER PHYSICS

B1 Attempt this question.
Give concise answers to all three parts of the question. Relevant formulae

may be assumed without proof.

(a) Explain why metals are generally highly reflective at optical frequencies
and transparent in the ultraviolet. [4]

(b) The semiconductor germanium has a relative permittivity of 16 and an
electron effective mass of 0.2 me. Estimate the doping concentration level
above which the donor electron wavefunctions significantly overlap. [4]

(c) Consider a hole formed by removing an electron from a particular Bloch
state in an otherwise filled band. What are the momentum, energy, velocity,
effective mass and charge of the hole compared with those of an electron
occupying this particular Bloch state in an otherwise empty band? [4]

B2 Attempt this question.
Write brief notes on two of the following: [13]

(a) techniques for probing band structure and the density of states in solids;

(b) heavy fermions, including two experimental properties of heavy fermion
systems;

(c) the Peierls distortion and its observation;

(d) nearly-free-electron theory and how it can explain band-gap formation in
a crystal.
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B3 Attempt either this question or question B4.
Outline the difference between direct and indirect band-gap semiconductors.

Which material is better for making light-emitting diodes, and why? [5]
A semiconductor p-n junction has a doping profile such that across the entire

depletion region the doping is linearly graded. The total doping concentration,
N(x), in the interval is given by

N(x) = ND(x)−NA(x) = α x,

where x is the distance perpendicular to the plane of the junction interface and α
is a constant representing the compensated doping gradient. ND(x) and NA(x)
represent the donor and acceptor doping concentrations, respectively, as a function
of x.

Assuming all the donors and acceptors are ionized in the depletion region,
show that Poisson’s equation can be written as

∂2V

∂x2
=

eαx

ε0εr

where e is the electron charge, εr is the relative permittivity of the semiconductor
and ε0 is the permittivity of free space. Outside the depletion region ∂2V /∂x2 = 0. [2]

At what value of x does the material have the lowest conductivity, and why? [2]
Sketch the variation in the energies of the bottom of the conduction band, of

the top of the valence band and of the chemical potential as a function of x across
the depletion region. At equilibrium a potential Vb is dropped across the junction.
What is the origin of this potential? [6]

By solving Poisson’s equation, derive an expression for the electric field as a
function of position within the depletion region. At what value of x will the
modulus of the electric field be a maximum? [4]

Show that the width of the depletion region is given by

(
12ε0εrVb

eα

)1/3

.
[6]
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B4 Attempt either this question or question B3.
State Bloch’s theorem for a particle in a periodic potential. [4]
For a one-dimensional chain of atoms in a fixed periodic potential, assume

the only significant wavefunction overlap is for nearest neighbours a distance a
apart. Use the tight binding method and Bloch wavefunctions to show that the
band energy states, E, vary with wave-vector, k, as

E(k) = E0 + 2t cos(ka),

where t is the hopping matrix element for nearest neighbours and E0 is a constant
energy term. [5]

Extend this calculation to a solid consisting of a simple cubic lattice of
atoms and show that the width of the band of allowed energy states is 12t. [4]

Show that, for small values of k, the constant energy surfaces are spheres in
k-space, and derive an expression for the effective mass. [4]

Assume t is given by

t = −2E1

(
1 +

a

a1

)
exp

(
− a

a1

)
,

where E1 is a constant with units of energy and a1 is a constant with units of
length. Write down an expression for the variation of the effective mass with
atomic separation a, for small values of k, and sketch the form of this variation. [4]

The solid above, with a = a1, is compressed uniformly such that there is a
fractional reduction of 0.01 in the value of a. Calculate the fractional change in the
width of the band. [4]

END OF PAPER
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