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QUANTUM CONDENSED MATTER PHYSICS

1 Attempt all parts of this question. Answers should be concise and relevant
formulae may be assumed without proof.

(a) Calculate the plasma frequency, ωp =
√

ne2/(mε0), for a typical metal. What
is the physical significance of this quantity? [4]

(b) Consider three atoms arranged in an equilateral triangle. The ‘on-site’ energy
of an electron on each atom is 〈n|H |n〉 = E0, where |n〉 denotes the spatial wave
function of an electron localised on the nth atom, with n = 1,2,3. The hopping
term between neighbouring atoms is 〈n|H |n + 1〉 = t < 0. What are the
ground-state spatial wave function and energy of a single electron in this ring? [4]

(c) Consider N conduction electrons in a volume V , neglect interactions between
electrons with the same spin, and assume that the energy per electron due to
repulsion between electrons of opposite spin is U N↑N↓/N2. For U above some
critical value, Uc, a ferromagnetic state has a lower energy than an unpolarised one
with N↑ = N↓ = N/2. Find the scaling of Uc with V and N . [4]

2 Attempt this question. Credit will be given for well-structured and clear
explanations, including appropriate diagrams and formulae. Detailed mathematical
derivations are not required.

Write brief notes on two of the following: [13]
(a) covalent and ionic bonds;

(b) DC conductivity and the Hall effect within the Drude model;

(c) the nearly-free-electron and tight-binding models, emphasising how different
energy bands arise in each case.
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3 Attempt either this question or question 4.
In a particular material with ‘spin-orbit coupling’, the energy of the conduction

electrons depends on both motional and spin degrees of freedom. Using plane-wave
basis states |kσ〉, with wavevector k and spin-state σ quantised along the z-direction, the
general state has the form

|ψk〉 = α |k ↑〉 + β |k ↓〉 ,

and the Hamiltonian can be expressed as

H =

(
h2k2/(2m) λ(−ky − ikx)
λ(−ky + ikx) h2k2/(2m)

)
,

where λ is a constant and m is the electron effective mass.
Show that the energy dispersion in this material has two bands, which for kz = 0

take the form

E± =
h2

2m

(
k2 ± qR |k |

)
,

and express qR in terms of λ, h and m. [5]
Sketch the dispersion of the spin-split bands E+(k) and E−(k) along k = (kx ,0,0),

indicating the minimal value of E− and the value(s) of kx for which it occurs. [4]
For k in the kz = 0 plane, sketch the Fermi surfaces for three different values of

the Fermi energy: (i) −h2q2
R/(8m) < EF < 0, (ii) EF = 0, and (iii) EF > 0. In each case

clearly indicate which k states are unoccupied, singly occupied, and doubly occupied. [6]
Measurements of the Fermi surface cross-section in this material, for kz = 0 and

EF > 0, reveal two Fermi wavevectors: k1 = 0.11Å
−1

and k2 = 0.01Å
−1

. Find the value
of qR. [4]

For kz = 0, the spin eigenstates of H in the E−(k) band are(
α
β

)
=

1
√

2

(
(ky + ikx)/ |k |

1

)
.

Deduce the spin eigenstates in the E+(k) band and sketch how the spin direction varies
with the direction of k on the two Fermi surfaces, |k | = k1 and |k | = k2. [6]



You may use the following eigenstates and eigenvalues of the Pauli matrices:

σx
1
√

2

(
1
±1

)
= ±

1
√

2

(
1
±1

)
, σy

1
√

2

(
1
±i

)
= ±

1
√

2

(
1
±i

)
.



(TURN OVER
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4 Attempt either this question or question 3.
Show that the intrinsic carrier concentration ni in a non-degenerate semiconductor

is given by

n2
i = np =

1
2

(memh)3/2
(

kBT

πh2

)3

exp
(
−

Eg

kBT

)
,

where me and mh are the electron and hole effective masses, Eg is the band gap energy,
and n and p are the electron and hole concentrations. [8][

You may find one of the following results useful:
∫ ∞

0

√
x e−x dx =

√
π/2 ,∫ ∞

0 x2 e−x2
dx =

√
π/4 .

]
Make an annotated sketch of the bending of the conduction and valence bands, and

of the electron and hole concentrations, across an unbiased p−n junction. [5]
The current in a reverse-biased p−n junction diode with an applied voltage V

follows the diode equation:

I = Isat

[
1 − exp

(
−

eV
kBT

)]
,

where the saturation current Isat is proportional to n2
i . Identify the origins of the two

contributions to I. [4]
The diagram below shows measurements of the current across a germanium p−n

diode under reverse bias. Explain the form of the curves and their temperature
dependence. [4]

Deduce the value of the band gap in germanium. [4]

END OF PAPER


