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QCMP-2014/15 — Quantum Condensed Matter Physics

Problem sheet 1: Lorentz dipole oscillator model, Drude model, Sommerfeld
theory, lattices

1. Sapphire
A sapphire crystal doped with titanium absorbs strongly around 500 nm. Calculate the
difference in the refractive index of the doped crystal above and below the 500 nm ab-
sorption band, if the density of absorbing atoms is 1 · 1025 m−3. The refractive index of
undoped sapphire is 1.77.

2. Reflectivity of metals

The phase velocity of light in a conducting medium is the speed of light divided by the
refractive index N(ω) = ε(ω)1/2 where we may use for ε the Drude result

ε(ω) = 1−
ω2
p

ω2 + iω/τ
. (1)

In a “good” metal, we have 1/τ � ωp.

Show that

(a) For ω � 1/τ , ε is large and imaginary, so that |N | � 1 and N has roughly equal real
and imaginary parts,

(b) For 1/τ � ω � ωp, ε is real and negative, so that N is imaginary,

(c) For ω > ωp, ε is positive, and N is real.

Consider a light wave with the electric field polarised in the x−direction at normal inci-
dence from the vacuum on a good Drude metal (with 1/τ � ωp) occupying the region
z > 0. In the vacuum (z < 0), the incident E1 and reflected E2 waves give rise to a field

Ex = E1 exp(iω[z/c− t]) + E2 exp(−iω[z/c+ t]) , (2)

whereas in the medium, the electric field is

Ex = E0 exp(iω[N(ω)z/c− t]) . (3)

Matching the electric and magnetic fields on the boundary, show that

E0 = E1 + E2 , (4)

NE0 = E1 − E2 , (5)

and hence show that the reflection coefficient satisfies

R =

∣∣∣∣E2

E1

∣∣∣∣2 =

∣∣∣∣1−N1 +N

∣∣∣∣2 . (6)

Using the Drude formula above, show that

R ≈ 1− 2

(
2ε0ω

σ(0)

)1/2

for ω � 1/τ (7)

≈ 1− 2

ωpτ
for 1/τ � ω � ωp (8)

≈ 1

16

(ωp
ω

)4
for ωp � ω (9)
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and sketch the reflectivity R(ω).

To get the first two of these results with the minimum of fuss, you may find it helpful to
expand in 1/N , viz.

R =
(1− 1

N )(1− 1
N∗ )

(1 + 1
N )(1 + 1

N∗ )
≈ 1− 4<(1/N) (10)

3. Optical properties of solids

Discuss why, at optical frequencies, glass is transparent, and silver is shiny, while graphite
appears black, and powdered sugar is white.

4. Static conductivity tensor

Show that in the presence of a magnetic field B aligned along the z-axis, the electrical
conductivity can be written as a tensor j = σ ·E, with

σ =
σo

1 + β2

 1 β 0
−β 1 0
0 0 1 + β2

 (11)

Here ωc = qB
m∗ , β = ωcτ and σo = ne2τ/m∗. The carrier charge q can be +e or −e.

In a high magnetic field (β � 1), show that σxy = −σyx = nq/B.

5. Density of states for free electrons

(a) What is the Fermi wavevector and Fermi energy as a function of particle density for a
free electron gas in one and two dimensions (define density appropriately)?

(b) Calculate the density of states in energy for free electrons in one and two dimensions.

[Answer:(2m/πh̄2)× (h̄2/2mE)
1
2 , (d=1); (m/πh̄2), d=2; (m/π2h̄2)× (2mE/h̄2)

1
2 , d=3 .]

(c) Show how the 3D density of states can be re-written as

(3/2)(n/EF )(E/EF )
1
2

with n = N/V .

6. Thomas-Fermi screening

Show that in a metal, a spatially modulated external potential with wavenumber q and
amplitude Vext(q), induces a spatially oscillating number density nind with amplitude

nind(q) =
ε0q

2

e

Vext(q)[
1 + q2/q2

TF

] ,
with q2

TF = 1
π2

me2

ε0h̄2
kF = 4

π
kF
aB

= (2.95√
rs

Å
−1

)2, the Thomas-Fermi wavevector.

For the potential generated by a localised impurity of charge Q, Vext = Q/(4πε0r), show
that the induced charge density is then of the form

nind(r) ∝
e−r/ξ

r

and identify the screening length ξ.
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7. Diatomic molecule

This is a simple problem to illustrate the physics of a diatomic molecule. It also provides
an elementary example of the Linear Combination of Atomic Orbitals (LCAO), or tight
binding method, which we shall be using later to describe extended solids.

We restrict the basis of states to just the ground state of each atom in isolation, whereas of
course an accurate solution would require a complete set of states that of necessity would
include all the excited states of the atoms. The basis set consists of two states |a > and
|b > that satisfy

Ha|a > = Ea|a > (12)

Hb|b > = Eb|b > (13)

and we look for solutions
|ψ >= α|a > +β|b > (14)

Neglecting the direct matrix elements < a|b > for simplicity (these are easily included if
necessary), derive the matrix equation for the wavefunctions and eigenvalues(

Haa − E Hab

Hba Hbb − E

)(
α
β

)
= 0 (15)

where the matrix elements are of two kinds:
Onsite, or crystal field terms

Haa = 〈a |T + Va + Vb| a〉 = Ea + 〈a |Vb| a〉 = Ẽa (16)

Offsite, or hopping terms
Hab = 〈a |T + Va + Vb| b〉 = t (17)

(Note that the sign of t depends on the symmetry of the orbitals: for s-states, with an
attractive potential Vi < 0, then t is negative; but for px states t is positive for atoms
aligned along x.)

Solve for the wavefunctions and eigenvalues, for t < 0.

Sketch the wavefunctions and charge densities for the lower and upper states, in the cases
of (a) identical atoms Ẽa = Ẽb, and (b) the strongly ionic limit Ẽa − Ẽb � |t|

8. BCC and FCC lattices
Show that the reciprocal lattice of a body centred cubic lattice (BCC) of spacing a is a
face centred cubic (FCC) lattice of spacing 4π/a; and that the reciprocal lattice of a FCC
lattice of spacing a is a BCC lattice of spacing 4π/a.

9. Reciprocal lattice cell volume
Show that the volume of the primitive unit cell of the reciprocal lattice is (2π)3/Ωcell,
where Ωcell is the volume of the primitive unit cell of the crystal.

10. Bragg’s law
(a) Show that the reciprocal lattice vector G = hb1 + kb2 + lb2 is perpendicular to the
(hkl) plane of the crystal lattice.
(b) Show that the distance between two adjacent (hkl) planes is 2π/|G|.
(c) Show that the condition k · G2 = (G2 )2 may be written as

2π

λ
sin θ =

π

d
(18)

where λ = 2π/k, and θ is the angle between the incident beam and the crystal plane.
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11. Acoustic phonon dispersion in the monatomic chain
The equation of motion for a chain of atoms of mass m, which are coupled together by
springs with spring constant K, is mün = K(un+1 − un) + K(un−1 − un). Use a plane
wave trial function for the displacement of atom n, un(t) = uocos(qrn − ω(q)t), to derive
the dispersion relation for the one-dimensional monatomic chain:

mω2(q) = 2K(1− cos(qa)) = 4K sin2(
qa

2
)

12. Heat capacity of a metal
Show that the molar heat capacity C of metals at low temperature, T , takes the form

C = γT + βT 3 ,

where γ = π2

3 k
2
Bg(EF ) and β = 12π4

5 NAkBθ
−3
D are material dependent constants. g(EF )

is the molar density of states at the Fermi energy, EF , θD is the Debye temperature and
NA is Avogadro’s number. [It is not necessary to deduce the precise form of the numerical
prefactors.]

The graph above shows the heat capacity per mole of the metallic compound Ba4Na2Ge25,
measured to 5 K and plotted as C/T vs. T 2. The line is a linear fit to the low-temperature
region. The molar volume of Ba4Na2Ge25 is Vm = 4.6 · 10−4 m3.

From the measured data, extract the parameter γ and find g(EF ). Assuming a free
electron model with a single, parabolic band and two conduction electrons per formula
unit, estimate the Fermi energy and the Fermi wavevector, kF . Would you expect the
Fermi wavevector computed above to lie inside or outside the first Brillouin zone?

From the measured data, extract the parameter β and find θD. Estimate the Debye
wavevector kD and the speed of sound in this material.

Why does the measured heat capacity at temperatures T 2 > 10 K2 deviate significantly
from the low temperature form discussed above? What form do you expect the molar heat
capacity to take at even higher temperatures T >> θD?

Note: Starred questions are challenge problems; they will do you good, but they go beyond the
minimum requirements of the course.
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