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QCMP-2014/15 — Quantum Condensed Matter Physics

Problem sheet 2: Band structure

1. Optical absorption of simple metals
Sketch the typical energy-wavevector dependence, or dispersion relation, of electrons in
a one-dimensional periodic potential within nearly free electron theory. In your sketch,
include the unperturbed dispersion, the effects of the periodic potential, the Brillouin zone,
the relevant reciprocal lattice wavevector, and the folded-back band structure. How can
this approach explain the formation of energy gaps in solids?

In the first Brillouin zone of a body centred cubic (BCC) crystal, the shortest distance from
the zone centre to the zone boundary is

√
2π/a, where a is the width of the conventional

cubic unit cell. Demonstrate that the free electron Fermi surface of a monovalent metal
with the BCC structure is contained entirely within the first Brillouin zone.

The absorption of photons in metals excites an electron from a filled state at wavevector
k to an empty state at the same wavevector, but in a higher band. In the electronic
dispersion diagram drawn up above, indicate the absorption process which requires the
minimum, or threshold energy E0. For a BCC monovalent material, show that this energy
is E0 ≈ 0.64EF .

Figure 1: AC-conductivity for three alkaline metals

Alkali metals have a BCC structure. The experimental data on Fig. 1 show the frequency
dependence of the conductivity in the alkali metals Na, K, and Rb, which have lattice
constants a, respectively, of 0.423 nm, 0.523 nm, and 0.559 nm. The broad peaks at
higher frequencies in each curve have been interpreted as arising from interband optical
absorption. Is this qualitatively consistent with nearly free electron behaviour?
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2. The diatomic chain

The lattice potential U(x) of a chain of atoms has Fourier components

Ug =
1

L

∫ L/2

−L/2
e−igxU(x)dx , (1)

where L→∞ is the length of the chain. Using the NFE approximation valid for momenta
near the zone boundary k → π/a, show that the energy eigenvalues are given by

E±(k) =
1

2

h̄2

2m

(
k2 + (k − 2π/a)2

)
± 1

2

√[
h̄2

2m
(k2 − (k − 2π/a)2)

]2
+ 4

∣∣U2π/a

∣∣2. (2)

Show that this leads to:
(a) an energy gap on the zone boundary of magnitude 2|U2π/a|, and

(b) wavefunctions for k→ π/a given by c±k /c
±
k−2π/a = ±U2π/a/|U2π/a|.

Hence show that the probability density for the electronic states at k = π/a take the form

|ψ(1)(x)|2 ∝ cos2(
πx

a
+
φ

2
)

|ψ(2)(x)|2 ∝ sin2(
πx

a
+
φ

2
) , (3)

where φ is the phase of the complex Fourier component U2π/a, ψ
(1) refers to the higher

energy (‘anti-bonding’) state, and ψ(2) denotes the lower energy (‘bonding’) state.

Figure 2: Diatomic chain of atoms. Note that if the potentials on the two atoms are identical,
and δ = 0, the chain converts to a monatomic chain of period a/2

Consider a one-dimensional diatomic lattice with lattice constant a (Fig. 2), in which

two atoms labelled A (light grey circles) and B (dark grey circles) take positions R
(A)
n =

na+ (a/4)(1− δ) and R
(B)
n = na− (a/4)(1− δ).

Show that U2π/a can be written

U2π/a = sin(
πδ

2
)(UA2π/a + UB2π/a)− i cos(

πδ

2
)(UA2π/a − U

B
2π/a) , (4)

where

UA,B2π/a =
1

L

∫ L/2

−L/2
dx e−i2πx/a

∑
n

UA,B(x− na) , (5)

and UA,B(x) is the potential due to a single atom of type A, B centred at x = 0.

The system contains an average of one electron per atom, or equivalently two electrons per
unit cell. Discuss the values of the energy gaps and plot the charge densities corresponding
to the highest filled electron state and the lowest empty electron state in the three cases;
(a) identical atoms, UA = UB, and δ = 0;
(b) different atoms UA 6= UB, and δ = 0, ;
(c) identical atoms, UA = UB, and δ 6= 0.

Explain how this provides a simple model of either an ionic or covalent solid.

QCMP-2014/15 Problem sheet 2 2 Lent Term 2014/15



University of Cambridge Cavendish Laboratory

3. Nearly free electron approximation for a square lattice
The potential in a 2-dimensional square crystal of side a is given by

V (x, y) = −2V0

[
cos

(
2πx

a

)
+ cos

(
2πy

a

)]
. (6)

Use the nearly-free electron approximation to calculate the electron energies at the wave-
vectors

k0 =
2π

a
(0, 0) ,k1 =

2π

a
(
1

2
, 0) ,k2 =

2π

a
(
1

2
,
1

2
) . (7)

(a) Write down the form of the wavefunction within the nearly-free-electron approximation,
using 1 plane wave at k0, 2 plane waves at k1, and 4 plane waves at k2.

(b) In each case, substitute these wavefunctions into the Schrödinger equation, and write
the resulting equations in matrix form.

(c) Solve the three eigenvalue problems for the energy levels at k0, k1, and k2.

4. Tight binding for BCC and FCC lattices

Show that the tightbinding bandstructure based on a single orbital per site for a body
centred cubic lattice (include only the hopping to the eight nearest neighbours) is

E(k) = ε0 + 8t cos(
1

2
kxa) cos(

1

2
kya) cos(

1

2
kza) , (8)

and for the face centred cubic lattice (twelve nearest neighbours)

E(k) = ε0 + 4t[cos(
1

2
kxa) cos(

1

2
kya) + cos(

1

2
kya) cos(

1

2
kza) + cos(

1

2
kza) cos(

1

2
kxa)] . (9)

5. 2D tight binding band

This question is to encourage you to visualise bands in two dimensions (and higher!). Using
a simple numerical package to plot representative cases will help.

Consider a two-dimensional band structure on a rectangular lattice

E(k) = 2 ∗ t1 cos(akx) + 2 ∗ t2 cos(bky) (10)

(a) What is the reciprocal lattice? Draw the first Brillouin zone boundary.

(b) What is the real space lattice?

(c) Suppose that t1 < 0, t2 < 0, |t1| > |t2|, and a < b. (Do you expect there to be a
relation?) Plot some contours of constant energy. At which momenta do you find the
band minima, maxima, and saddle points? What are the effective masses of electrons
at these points (keep track of signs)?

(d) For what range of energies are the energy contours open or closed? Does this bear
any relationship to the energies of the saddle points?

(e) ∗ Make a numerical estimation of the density of states as a function of energy (plot
a histogram, say). Can you give an analytic form for the energy- dependence of the
density of states near the singular points?
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6. * Graphite
A single sheet of graphite has two carbon atoms in the unit cell at positions d1 = 0 and
d2 = (a/

√
3)(0, 1, 0). The translation vectors for the two-dimensional hexagonal lattice

are t1 = (a/2)(1,
√

3, 0) and t2 = (a/2)(−1,
√

3, 0).
The electronic configuration of the carbon atom is 1s22s22p2, and ignoring the 1s core
states, we need to make a band structure from the s, px, py abd pz orbitals. Because s,
px and py orbitals are even under reflection through the plane, and pz odd, the two sets
do not mix. The first three states hybridise to form σ−bonds with a large gap between
the bonding and anti-bonding orbitals. Within this gap lie the π-orbitals arising from the
hybridised pz. The three bonding σ orbitals will accommodate 6 electrons per cell, leaving
2 electrons per unit cell in the π-bands. This question considers the electronic π-bands
only.

Figure 3: Two dimensional structure of graphite

(a) Construct Bloch states that consist of a linear mixture of the two pz orbitals in the
unit cell, and show how this gives rise to the secular equation to determine the eigenstate
energies ∣∣∣∣ Ep − E tF (k)

tF ∗(k) Ep − E

∣∣∣∣ = 0 , (11)

where t is the two center hopping matrix element between neighbouring pz orbitals, and

F (k) = 1 + 2 cos (
kxa

2
) exp (−i

√
3kya

2
) . (12)

(b) Show that the reciprocal lattice is also a hexagonal lattice, at an angle of π/6 to the
real-space lattice. Show that the first Brillouin zone is a hexagon centred at the point
Γ = (000), whose corners are at the points P = (2π/a)(2/3, 0, 0)

(c) Determine a formula for the dispersion curves for the two eigenstates, and plot them
in the directions ΓP , and ΓQ. (Here Q = (2π/a)(1/2, 1/2

√
3, 0) is at the middle of a zone

face.

(d) Where will the π-bands lie in energy relative to the sp2 σ- orbitals? Is a single layer
of graphite a metal or an insulator?

(e) Carbon nanotubes are formed by curling a graphite sheet into a tube, connecting
the atoms with periodic boundary conditions. There are many ways to do this, and the
different nanotubes can be indexed by the vector mt1 + nt2 that identifies which atoms
are connected periodically. Assuming the band-structure is unchanged, show that the
allowed k-states now lie on a set of lines whose direction is parallel to the tube. Discuss
the situations under which the resulting tube will be semiconducting or metallic.

7. Band structure of d-band metals
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In many transition metals a narrow d-band lies within a broad energy band originating
from s−orbitals. This question discusses the band structure using a simple one-dimensional
model contructed from a tight-binding Hamiltonian with one s-orbital φs(r) and one d-
orbital φd(r) per atom; the atoms are arranged in a linear chain of lattice constant a.

(a) Write down two Bloch states φs(k) and φd(k) formed from the atomic s- and d- states
respectively. The eigenstates must be linear combinations of these.

(b) Hence show that the one-particle bandstructure E(k) can be found from the determi-
nantal equation∣∣∣∣ Es − 2tss cos(ka)− E(k) −2tsd cos(ka)

−2tsd cos(ka) Ed − 2tdd cos(ka)− E(k)

∣∣∣∣ = 0 .

Identify and explain the parameters appearing in the determinantal equation, and discuss
the approximations made that lead to this form.

(c) Discuss why you would expect that tss > |tsd| > tdd.

(d) Plot the dispersion of the two bands when |Ed − Es| � 2|tss|, and tsd and tdd are
neglected.

(e) How is the dispersion modified from (d) by the inclusion of small values of tsd and tdd?

(f) Discuss the relevance of this model to the electronic bandstructure of Cu metal.

Note: Starred questions are challenge problems; they will do you good, but they go beyond the
minimum requirements of the course.
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