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QCMP-2014/15 — Quantum Condensed Matter Physics

Problem sheet 4: Semiconductor devices, interacting electron systems

1. Depletion layer

A full treatment of this problem requires the solution of the Poisson equation to determine
the electric field distribution V (x) combined with the thermal carrier statistics to determine
the occupancy of the states. At low temperature, when the boundary of the depletion regime
may be assumed to be sharp, it is more straightforward.

A metal-semiconductor contact is made between a perfect conductor and a uniformly
doped n-type semiconductor with a donor density Nd. Assume that the temperature is
low enough that the donor levels are completely filled or completely empty. By solving
Poisson’s equation, show that in the depletion region 0 < x < xb the potential satisfies

φ = φb −
Nde

2εε0
(xb − x)2 (1)

Estimate the depletion width for a semiconductor with ε = 12, eφb = 0.5 eV , and Nd =
1022 m−3.

2. Quantum well sub-bands

A 10 nm thick quantum well of GaAs is surrounded by bulk Al0.7Ga0.3As. The conduction
band offset is 0.26 eV, and the effective mass of electrons in GaAs is 0.066 me.

(a) Estimate the energies of the (bottom of the) sub-bands En(k = 0), assuming the walls
of the potential are infinitely high.

(b) What is the maximum areal density of electrons that can be occupied in the lowest
sub-band before the second sub-band starts to be filled?

(c) How many sub-bands do you estimate exist for the actual sitation — a well of finite
potential depth?

(d)* Note the word estimate in (c). Nevertheless, the 1D finite potential well is not a
difficult problem to solve, though the actual solution of eigenstate energies needs to be done
graphically.

For a potential of depth V0 and width L, show that the number of bound states is

1 + Int
[
(2m∗V0L

2/π2h̄2)1/2
]
. (2)

3. Brief notes 1
Write brief notes about

• p− n junctions and the p− n junction diode I − V characteristic.

• Light emitting diodes and solar cells.

• Field effect transistors.

4. Peierls transition

Consider a one-dimensional system which is filled up to the first Brillouin zone boundary at
k = π/a, and assume that there is a small gap produced by a single Fourier component of
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the lattice potential U = UK=2π/a (small meaning that U/E0
1
2
K
� 1). Consider momenta

close to the zone boundary, and show that a good approximation for the energy dispersion
of the bands is

E = E0

(
1±

√
U2

E2
0

+ 4κ2

)
where E0 = E0

1
2
K

and k = (π/a)(1 + κ), with κ� 1.

(*) Show that the change in electronic energy

Eelec =
1

N

∑
k occupied

[E(k;UK)− E(k;UK = 0)]

can be written approximately as

Eelec = |U |
∫ 1

0
dx

[
x

α
− (1 +

x2

α2
)1/2

]
∝ h̄2π2

ma2
α2 log(α) ,

in the limit that the parameter α = ma2

h̄2π2 |U | is much smaller than unity (i.e. the gap is
small compared to the bandwidth.)

5. Covalent bonds are singlets
How is it that electrons in a covalent bond - e.g. H2 - are almost invariably in singlet
states? The two atomic states that make up the wavefunction are not orthogonal, and so
the charge density is not independent of the spin-state of the ions. The singlet state will
lead to a charge density that is more favourable for strong bonds than the triplet.
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Figure 1: A sketch of the charge density for the wavefunctions in a singlet state (solid line) and
a triplet state(dotted line) for two overlapping gaussian orbitals in (3)

Consider single-particle wavefunctions on two neighbouring identical atoms ψA, ψB, which
may be assumed real. These are to be used as the basis for a two-electron state. Show
that the charge density in a singlet (triplet) state made out of the two orbitals is given by

ρ(r) = |ψA(r)|2 + |ψB(r)|2 ± 2 < ψA|ψB > ψA(r)ψB(r) . (3)

By reference to Fig. 1, explain why the singlet state will usually be lower in energy.
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6. Curie law
An exercise in statistical physics that you may well have seen before.

Using

M = − 1

V

∂F

∂H
, (4)

and the partition function

Z = e−βF =

J∑
Jz=−J

e−βgLµBHJz β = 1/kBT , (5)

derive the Curie law and the conditions for its validity.

7. Brief notes 2

• Show how the spin-independent Coulomb repulsion between electrons can give rise
to a spin-dependent exchange interaction.

• State the line of argument underlying Fermi liquid theory.

• List the key phenomena associated with heavy fermion materials and discuss their
interpretation in terms of massive quasiparticles.

• Explain how ferromagnetism in metals can be explained from Stoner’s band model.

• Explain the formation of charge density wave order via a Peierls transition.

8. Band magnets
The three metals calcium (Ca), scandium (Sc) and palladium (Pd) have experimentally
observed susceptibilities χ significantly higher than the Pauli susceptibilities χP calculated
from their densities of states g(EF ) (as obtained, for example, from specific heat capacity
measurements at low temperature):

Metal χ/χP g(EF )
(eV−1)

Ca 4.5 1.8
Sc 6.1 2.5
Pd 4.5 2.4

Table 1: Susceptibility enhancement χ/χP and
density of states at the Fermi level g(EF ) for
three metals

(a) State Stoner’s expression for the exchange-enhanced susceptibility of a metal and
explain the origin of the observed enhancement in Ca, Sc and Pd.

(b) Use the values from the table to extract the Stoner parameter (or Coulomb repulsion,
or exchange and correlation energy) U for each metal.

(c) Iron, cobalt and nickel have Stoner parameters U ' 0.5 eV. Put a lower bound on
the Sommerfeld coefficients (γ = Cm/T ) of these three metals.

9. Antiferromagnet in mean field approximation
An antiferromagnetic insulator consists of two sub-lattices. The magnetisation of the first
sublattice is M1, the magnetisation of the second sublattice is M2. We want to arrive
at the ordering temperature and M1,2(T ) curves of this material by considering a mean
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field model. To achieve this, we write the equations of state (M −H curves) of the two
sublattices as:

a1(T )M1 + b1M
3
1 = H + λ1M2 (6)

a2(T )M2 + b2M
3
2 = H + λ2M1 (7)

(8)

(a) Explain the meaning of the symbols in these equations and state the temperature
dependence of a1 and a2.

(b) At zero applied field we can set H = 0 and solve the two coupled equations. If we
want to focus only on the region near the ordering temperature TN , then it is useful
to approximate from the second equation:

M2 '
λ2

a2
M1

and substitute this into the first equation for M2 (and likewise for the second equa-
tion). Find the resulting decoupled equations for M1 and M2.

(c) Inserting the temperature dependences of a1(T ) and a2(T ), extract the ordering
temperature TN and the temperature dependence of the sublattice magnetisation
M1(T ),M2(T ) close to TN .

Note: Starred questions are challenge problems; they will do you good, but they go beyond the
minimum requirements of the course.
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